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ABSTRACT
This paper studies deep network architectures to address the
problem of video classification. A multi-stream framework is
proposed to fully utilize the rich multimodal information in
videos. Specifically, we first train three Convolutional Neu-
ral Networks to model spatial, short-term motion and audio
clues respectively. Long Short Term Memory networks are
then adopted to explore long-term temporal dynamics. With
the outputs of the individual streams on multiple classes, we
propose to mine class relationships hidden in the data from
the trained models. The automatically discovered relation-
ships are then leveraged in the multi-stream multi-class fu-
sion process as a prior, indicating which and how much infor-
mation is needed from the remaining classes, to adaptively
determine the optimal fusion weights for generating the final
scores of each class. Our contributions are two-fold. First,
the multi-stream framework is able to exploit multimodal
features that are more comprehensive than those previously
attempted. Second, our proposed fusion method not only
learns the best weights of the multiple network streams for
each class, but also takes class relationship into account,
which is known as a helpful clue in multi-class visual classi-
fication tasks. Our framework produces significantly better
results than the state of the arts on two popular bench-
marks, 92.2% on UCF-101 (without using audio) and 84.9%
on Columbia Consumer Videos.
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1. INTRODUCTION
The sheer volume of video data nowadays demands ro-

bust video classification techniques that can effectively rec-
ognize human actions and complex events for applications
like video search, summarization, intelligent surveillance and
etc. However, it is a particularly challenging problem due to
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Figure 1: Illustration of the proposed framework.

the complicated nature of videos, including large intra-class
variations caused by different viewing conditions and multi-
ple view points, noisy contents unrelated to the video topic,
and complex temporal structures incurring understanding
and computational difficulties. The fact that videos are in-
trinsically multimodal requires solutions that can explore
not only static visual information, but also motion and au-
ditory clues. Key to the development of video classifica-
tion systems is the design of good features. Popular feature
descriptors include the SIFT [33], the Mel-Frequency Cep-
stral Coefficients (MFCC) [66], the STIP [31] and the dense
trajectories [56], which can be encoded into video-level rep-
resentations by bag-of-words (BoW) [50, 68, 37] or Fisher
vectors (FV) [40, 43, 30, 70].

In contrast to the hand-engineered descriptors, the deep
neural networks that can learn features automatically from
raw data have demonstrated strong performance in various
domains. In particular, the convolutional neural networks
(ConvNets) are very successful on image analysis tasks like
object detection [14], object recognition [46, 51] and im-
age segmentation [11]. However, for video classification,



most deep network based approaches [22, 26, 45, 62] demon-
strated worse or similar results to the hand-engineered fea-
tures [56]. This is largely due to the high complexity of the
video data. Unlike images that only have static visual ap-
pearance information, videos also contain temporal motions
and auditory soundtracks. For example, a “diving” action
video usually involves a sequence of atoms, such as “jump-
ing from a platform”, “rotating in the air” and “falling into
water”, accompanied by cheering or clapping sounds. Some
approaches [22, 26, 45] only focused on the static frames and
short-term motion clues captured by a few adjacent frames,
which are apparently not sufficient. A few very recent stud-
ies attempted to use recurrent neural networks (RNN) to
model long-term temporal information and achieved com-
petitive performance [39, 64]. Nevertheless, the audio infor-
mation has rarely been exploited. Furthermore, most exist-
ing approaches fused the outputs of multiple networks in a
very straightforward way using simple classifiers like logistic
regression, which could lead to sub-optimal performance.

In addition, existing works for video categorization of-
ten assign single or multiple class labels to a video sample
independently without considering the relationships among
video semantics. However, humans do not recognize an ob-
ject (concept) separately but rely on the interconnections
of objects (concepts). The presence of related classes could
help better categorize the class of interest. For example,
“marathon”and“marching band”contain similar human mo-
tion patterns (at least when compared with unrelated class
pairs like “marathon” and “fishing”), and the confidence of
a video containing “marathon” could potentially help recog-
nize “marching band”. In other words, if a video receives
extremely low score of “marathon”, it is also unlikely to be
“marching band”. To leverage semantic relationships (i.e.,
context knowledge), many existing methods rely on compu-
tational expensive models (e.g., CRF), which are not feasible
for large-scale applications.

Realizing the above limitations, in this paper, we propose
a multi-stream framework of deep neural networks to exploit
the multimodal clues for video classification. Figure 1 illus-
trates the diagram of our approach. Three ConvNets are
trained to model the static spatial information, short-term
motion and auditory clues, respectively. The motion stream
is computed on stacked optical flows over a short temporal
windows and thus can only capture short-term motion. In
order to model the long-term temporal clues, we employ a
Recurrent Neural Network (RNN) model, namely the Long
Short Term Memory (LSTM), on the frame-level spatial and
motion features extracted by the ConvNets. The LSTM en-
codes history information in memory units regulated with
non-linear gates to discover temporal dependencies. To com-
bine the outputs from different networks, we develop a sim-
ple yet effective fusion method to learn the optimal fusion
weights adaptively for each class. Note that the deep mod-
els are trained using state-of-the-art networks, they possess
high discriminative power and hence contain valuable knowl-
edge on how classes are correlated. Therefore, we propose
to leverage the class relationships hidden in the data to con-
strain the learning process, by informing the classifier which
classes are related and how much information is needed from
the each of these related classes. In other words, to generate
the final prediction of a class of interest, the classifier also
considers the predictions of other correlated classes.

Our contributions are summarized as follows:

1. We introduce a multi-stream framework that integrates
spatial, short-term motion, long-term temporal and
auditory clues in videos. We demonstrate the multi-
stream networks are able to digest complementary clues
to receive significantly improved performance.

2. We propose a multi-stream multi-class fusion method
to combine the outputs of the individual networks.
The method not only learns the weights of individ-
ual network streams adaptively for each class, but also
harnesses class relationships that can further improve
the performance.

3. We conduct extensive experiments to validate the per-
formance of the proposed framework, and we achieved
superior performance on two popular datasets.

The rest of this paper is organized as follows. Section 2
reviews and discusses related works. Section 3 describes the
proposed multi-stream multi-class framework in detail. Ex-
perimental results and comparisons are discussed in Section
4, followed by conclusions in Section 5.

2. RELATED WORKS
As aforementioned, video classification has been exten-

sively studied and significant efforts have been paid to de-
sign discriminative features or robust classifiers. We focus
the review on recent works related to our proposed approach.

Hand-crafted Representations. There have been numer-
ous works focusing on developing effective features that are
expected to be robust to withstand intra-class variations and
discriminative to separate different categories. For example,
one can utilize image-based shape features, such as HOG
and SIFT [33], to capture appearance information on indi-
vidual frames. Different from frame-based features, motion
features are designed to take the object movements into ac-
count, which is appealing since motion information is critical
for understanding video contents. A popular way to obtain
motion features is by extending frame-based local features
into 3D space. For instance, Laptev et al. [31] extended
the Harris detector into 3D space to find space-time interest
points. Instead of locating interest points using 3D detec-
tors, Wang et al. obtained better performance on video clas-
sification tasks by sampling patches densely [58]. In a later
work, Wang et al. adopted the dense point trajectories, upon
which several features are extracted from regions that are
tracked with optical flow [56]. In addition, audio features are
also adopted as a complement of the visual channel, among
which the Mel-frequency cepstral coefficients (MFCC) is the
most popular one.

CNN Representations. Motived by the promising results
of deep networks (particularly the ConvNets) on image anal-
ysis tasks [51, 46, 14], several works have exploited deep ar-
chitectures for video classification. Ji et al. extended CNN
models into spatial-temporal space by operating on stacked
video frames [22]. Karparthy et al. compared several archi-
tectures for action recognition [26]. Tran et al. proposed to
learn generic spatial-temporal features which can be com-
puted efficiently [53]. Xu et al. adopted advanced feature
encoding strategies (i.e., VLAD) to promote the generaliza-
tion ability of CNN representations [65]. Zha et al. evalu-
ated several options of using CNNs for event detection [70].



Simonyan and Zisserman [45] introduced an interesting two-
stream approach, where two ConvNets are trained to explic-
itly capture spatial and short-term motion information using
frames and stacked optical flows as inputs, respectively. Fi-
nal predictions can be obtained by linearly averaging the
prediction scores of the two ConvNets. A recent work by
Wang et al. [59] combined the two-stream approach with
the traditional dense trajectories [56] and reported strong
results. In this paper, we also adopt two similar ConvNets
as [45]. However, as the two-stream approach is not able
to model the auditory and the long-term temporal clues,
we adopt additional networks to build a more comprehen-
sive framework. A novel fusion method is also proposed to
combine the multi-stream outputs, which is better than the
simple linear fusion used in [45].

Temporal Structure. Extensive works have been con-
ducted to explore the temporal dynamics in videos. For
example, Tang et al. introduced a HMM model to capture
the changes of states for videos with variable durations [52].
Wang et al. combined feature templates with parts in a max-
margin hidden CRF framework [61]. In addition to using
graphical models, Fernando et al. proposed to train a linear
ranking machine on the frames of a video, whose parameters
will then be used to obtain a video-level representation [12].
Ramanathan introduced an unsupervised way to learn tem-
poral embeddings using context information like word vec-
tors [42]. More recently, RNN has been shown to be effective
on many sequential modeling tasks, such as speech recogni-
tion [15] and image/video analysis [9, 67, 71]. For long-term
temporal modeling of the video data, Srivastava et al. pro-
posed an LSTM encoder-decoder framework to learn video
representations in an unsupervised manner [48]. Donahua et
al. [9] and Wu et al. [64] trained a two-layer LSTM network
for action classification. Ng et al. [39] further demonstrated
that a five-layer LSTM network is slightly better. Veeriah
et al. proposed a differential gating scheme for LSTM to
emphasize on the change in information gain [55]. More re-
cently, Sharma et al. incorporated the attention mechanism
into LSTM to identify the most relevant information (e.g.,
objects) for recognizing actions [44].

Fusion. Videos naturally contain abundant clues, and hence
a decent video categorization system often fuses multiple
sources of information for improved recognition performance
[69, 20]. The simplest fusion strategy is linear weighted fu-
sion, which has been adopted in many recent approaches
like [45]. Nandakumar et al. performed score fusion using a
method called likelihood ratio test [36]. More recently, Xu et
al. [66] and Ye et al. [68] proposed robust late fusion methods
by seeking a low rank matrix to remove the noise of individ-
ually trained classifiers. Liu et al. [32] proposed to predict
sample-specific weights in the fusion process. There are also
a few works attempting to fuse multiple features with deep
neural networks. Srivastava et al. proposed to combine fea-
tures using deep Boltzmann Machines [49]. Neverova formu-
lated the fusion problem as a modality dropping process [38].
Our paper relies on state-of-the-art deep models to charac-
terize videos from different perspectives, and then performs
a simple late fusion approach to further combine scores from
multiple streams for final predictions.

Class Relationships. There are many studies using class
relationships (a.k.a. context) to improve multi-class visual
recognition performance. For instance, Rabinovich et al. uti-

lized a Conditional Random Field (CRF) model to maximize
object label agreement based on contextual relevance [41].
Jiang et al. used a semantic diffusion algorithm to incorpo-
rate class relationships [24]. Deng et al. proposed to jointly
train a hierarchy and exclusion graph model with a Con-
vNet to learn class relations for image classification [8]. As-
sari et al. exploited class co-occurrences for improved video
classification [2]. Wu et al. [63] proposed a regularized neu-
ral network to fuse features and explore class relationships,
but used traditional hand-engineered features as inputs. Re-
cently, Chen and Gupta utilized the class correlations in the
form of confusion matrix to refine the classification scores
from the softmax layer [6]. Note that Multi-Task Learning
(MTL) also attempts to improve recognition performance by
enforcing similar zero/nonzero patterns in the weight matrix
through structural norms, which enables knowledge sharing
among highly related tasks (classes). In our work, we adopt
a data-driven approach, mining the knowledge learned by
the models themselves, to borrow useful information from
classes with relatedness.

3. THE PROPOSED APPROACH
In this section, we first describe the individual network

streams and then introduce the proposed fusion method.

3.1 Multi-Stream ConvNets
Carrying abundant multimodal information, videos nor-

mally show the movements and interactions of objects un-
der certain scenes over time, accompanied by human voices
or background sounds. Therefore, video data can be nat-
urally decomposed into spatial, motion and audio streams.
The spatial stream consisting of individual frames depicts
the static appearance information, while the motion stream
captures object or scene movements demonstrated by con-
tinuous frames. In addition, sounds in the audio stream
provide crucial clues that are often complementary to the
visual counterpart. Motivated by the recent two-stream ap-
proach [45], we train three ConvNets to exploit the multi-
modal information, as described below.

In brief, the spatial ConvNet uses the raw frames as in-
puts, where we adopt a deep architecture with superior per-
formance on image recognition tasks [46]. It can effectively
recognize certain video semantics that have clear and dis-
criminative appearance characteristics. For the motion stream,
we train a ConvNet model operating on stacked optical flows
following [45]. More specifically, through computing dis-
placement vectors in both horizontal and vertical ways, the
optical flows encode subtle motion patterns of objects be-
tween each pair of adjacent frames, which can be converted
into two flow images as the inputs of the motion stream Con-
vNet. Previous studies have shown that further improve-
ments can be obtained by stacking consecutive optical flow
images in a short time window, owing to the inclusion of
relatively more compact movements [45]. In order to lever-
age the audio information, we first apply the Short-Time
Fourier Transformation to convert the 1-d soundtrack into
a 2-D image (namely spectrogram) with the horizontal axis
and vertical axis being time-scale and frequency-scale re-
spectively. Then we employ a ConvNet to operate on the
spectrograms as suggested in [54]. Notice that the ConvNet
is well suited for modeling audio signals based on spectro-
grams with the weight sharing and max pooling mechanism
to strive invariance of small frequency shifts [1].
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Figure 2: The structure of an LSTM unit.

3.2 Long Term Temporal Modeling
As the motion stream ConvNet only captures short-term

motion patterns, we further employ LSTM [18] to model
long-term temporal clues in the visual channel. LSTM is
able to exploit temporal information of a data sequence with
arbitrary length through recursively mapping the input se-
quence to output labels with hidden units. Each of the units
maintains a built-in memory cell, which stores information
over time guarded by several non-linear gate units to con-
trol the amount of changes and influence of the memory
contents. To keep this paper self-contained, we briefly in-
troduce LSTM as follows.

Figure 2 illustrates the typical structure of a hidden LSTM
unit. In our framework, we denote xt as the feature repre-
sentation of a video frame or a stacked optical flow image
at the t-th time step. Generally, an LSTM maps an input
sequence (x1,x2, . . . ,xT ) to output labels (y1,y2, . . . ,yT )
through computing activations of the units in the network
recursively from t = 1 to t = T . At time t, the activation
vectors of memory cell ct, output gate ot and hidden state
ht are computed as:

ct = ft � ct−1 + it � tanh(Wxcxt + Whcht−1 + bc),

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo),

ht = ot � tanh(ct), (1)

where Wxc,Whc,Wxo,Who,Wco are the weight matrices
connecting two different units. bc,bo are the bias terms, σ
is the sigmoid function, and � is an element-wise product
operator. Notice that it and ft are the activation vectors
of input and forget gates, which are calculated with weight
matrices as:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi),

ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf ). (2)

From the above equations, the contents of the memory cell
at the t-th time step ct is computed as the weighted sum of
the current inputs and the previous memory contents ct−1.
The input and forget gates (i.e., it and ft) impose regular-
ization to determine whether to consider new information
or forget old information. In addition, the output gate ot

controls the amount of information from the memory con-
tents that is passed to the hidden state ht to influence the
computation in the next time step.

As a neural network, the LSTM model can be easily deep-
ened by stacking the hidden states from a layer l−1 as inputs
of the next layer l. In order to obtain the prediction scores
for a total of C classes at a time step t, a softmax layer
is placed on top of the last LSTM layer L to estimate the

posterior probability pc of the c-th class as:

pc = softmax(hL
t ) =

exp(uc
ThL

t + bc)∑
c′∈C exp(uc′

ThL
t + bc′)

, (3)

where uc and bc represent the corresponding weight vector
and the bias term of the c-th class. Such an LSTM network
can be trained using the Back-Propagation Through Time
(BPTT) algorithm [16], which “unrolls” the model into a
feed forward neural net and back-propagates to determine
the optimal network parameters. We adopt the output from
the last layer as the video-level prediction scores since this
output is computed based on the information from the entire
sequence. Our empirical results show that using the output
of the last time step is better than pooling the predictions
at all the time steps.

3.3 Multi-Stream Fusion
Given the prediction scores of the multiple deep network

streams (each stream outputs scores of multiple classes), we
are able to capture the video characteristics from different
aspects. It is critical to effectively fuse the scores to gen-
erate the final predictions. Different semantic classes asso-
ciate with the multiple streams with different strength. For
example, some classes are strongly associated with partic-
ular objects which could be effectively recognized with the
spatial stream, while others may contain dramatic move-
ments so the short-term motion and the long-term temporal
clues can contribute more significantly. Traditional fusion
methods are usually performed in a uniform way without
considering the class-specific preferences.

More formally, we denote the prediction scores from the
m-th stream as sm ∈ RC (m = 1, · · · ,M) with C being the
number of classes, and let ŷ be the final predicted labels.
A straightforward way of late fusion is to compute the final
prediction as ŷ = f(s1, · · · , sM ). Here f is a transition
function, which can be a linear function, a logistic function,
etc. However, such a late fusion approach treats all the
classes uniformly and relies on the assumption that scores
from multiple networks are explicitly complementary.

Different from the uniform fusion methods, we attempt to
adaptively integrate the predictions from multiple streams to
determine the optimal fusion weights for each class. To this
end, we first stack the multiple score vectors of a training
sample n as a coefficient vector:

sn =
[
s1n
>
, · · · , smn >, · · · , sMn

>]> ∈ RCM (4)

Then the best class-specific fusion weights can be learned
with simple classifiers like logistic regression:

W = arg min
w,··· ,wC

∑
n,c

log
(

1 + exp
[
(1− 2yn,c)s

T
nwc

])
, (5)

where yn,c is the ground-truth label of the n-th sample for
class c, and W = [w1, · · · ,wc, · · · ,wC ] ∈ RCM×C . How-
ever, the final prediction score of class c in this process not
only comes from its own scores of different streams, but also
utilizes knowledge from other classes, which incurs extra pa-
rameters that will often lead to over-fitting.

3.4 Utilizing Class Relationships
To alleviate the over-fitting effect, one may use sparsity

constraints (e.g., `1 or `21 norm) to force entries to be zero in



the weight matrix as a means of feature selection. For exam-
ple, `1 norm penalizes non-zero weights, which will lead to
the parameter vector to be sparse ignoring certain informa-
tion in the input data. Nevertheless, instead of recognizing
objects/concepts independently, humans can utilize the re-
lations among concepts to derive a better understanding of
the object of interest. Researchers also confirm that class
relationships (a.k.a. semantic context) are known as helpful
clues in multi-class visual recognition tasks and have been
popularly used for improved performance [41, 4, 8]. There-
fore, we believe that injecting such intrinsic class relation-
ships in the learning process can improve the result.

Different from enforcing zero patterns in the weight ma-
trix, in this paper, we tackle this problem by resorting to ex-
isting knowledge to determine the information from which
classes and to what extent will be needed, and hence the
parameters do not need to be learned from scratch. For
example, we can adopt off-the-shelf WordNet/ConceptNet
to obtain the relations among multiple concepts. However,
these relations are handcrafted, which might be semanti-
cally similar but ignore the visual patterns. Note that each
stream is a well-trained deep network, consisting of valuable
information on data distribution. Therefore, we propose to
mine knowledge (i.e., class relationships) from the models
themselves using the confusion matrix, which is a good indi-
cator on how classes are related. More formally, we denote
Vm ∈ RC×C to be the similarity matrix of different classes
for the m-th stream, and hence Vm

ij indicates the correlation
between class Ci and Cj .

Confusion Matrix. We simply test the network on the
validation set and adopt the confusion matrix to measure
similarity among video classes:

Vm
ij =

1

|Ci|
∑
n∈Ci

1argmaxc(smn )==Cj
. (6)

where 1(·) is the indicator function, Ci is the collection of
training samples that belongs to class i, and |·| is the car-
dinality function. Here each entry Vij indicates the per-
centage of the samples with the ground-truth label of class i
being wrongly classified into class j. We visualize the con-
fusion matrix generated by the spatial ConvNet on CCV in
Figure 3, which demonstrates how classes are correlated.

The reason of using a separate correlation matrix for each
stream is that the captured class relationships in different
streams are likely to be quite different. For instance, some
classes are similar visually and some may share certain audio
clues.

After obtaining the class relationship matrices of all the
streams using the above equation, we stack the matrices V =[
V1, · · · ,Vm, · · · ,VM

]>
to constrain the weight learning

process as:

min
W

L(S,Y; W) + λ1 ‖W −V‖2F , (7)

where the first term is the empirical loss defined in Equa-
tion 5. The second term constrains the fusion weights us-
ing the class correlation as a prior, with “F” indicating the
Frobenius norm. For each similarity matrix Vm, the non-
diagonal entries demonstrate the similarities among differ-
ent classes, which can be used to guide the weight learning
process through borrowing information from highly related
classes. Since the class relationship matrix V constrains
which classes to be used and how much is needed, the best

Figure 3: The confusion matrix of the spatial Con-
vNet on CCV.

optimal weights could be learned easier without suffering
over-fitting. In addition, we also incorporate an `1 norm
term to impose sparsity on the weight matrix, which, to
some extent, can help avoid information sharing across ir-
relevant classes. Integrating all the terms, we have the fol-
lowing optimization problem:

min
W

L(S,Y; W) + λ1 ‖W −V‖2F + λ2 ‖W‖1 . (8)

Different from enforcing sparsity patterns as in standard
MTL:

min
W

L(S,Y; W) + λ1 ‖W‖p , (9)

where the second term could be `1-norm, `2-norm or `2,1-
norm, our fusion approach relies on the class relationship
matrix to constrain the weights for improved performance.
As our approach not only fuses the multiple network streams
but also utilizes class relationship, we name it as multi-
stream multi-class fusion. The contribution from each com-
ponent of the objective function will be evaluated later.

Although the loss function in Equation 8 is convex, it is
non-trivial to solve it due to the non-smooth term. To tackle
the optimization problem efficiently, we adopt the proximal
gradient descent method that splits the objective function
into a smooth part and a non-smooth part:

g = L(S,Y; W) + λ1 ‖W −V‖2F , (10)

h = λ2 ‖W‖1 . (11)

The update of W at the k+ 1 iteration can be simply com-
puted as:

Wk+1 = Proxh(Wk −∇g(Wk)),

where Proxh denotes the soft-thresholding operator for the
`1 norm [10].

Note that the additional computational cost lies in the
estimation of the proximal operator. Since it can be an-



alytically solved in linear time [3], the above optimization
process is fairly efficient.

3.5 Implementation Details and Discussions
ConvNet Models. In this work, we adopt two ConvNet ar-
chitectures, the CNN M [45] model for capturing the short-
term motion and the audio clues and a recent deeper VGG 19
architecture for the spatial stream [46]. The CNN M is basi-
cally a variant of the AlexNet [28] with more filters included,
which contains five convolutional layers followed by three
fully connected layers. The VGG 19 not only reduces the
size of the convolutional filters and the stride, but also ex-
tends the depth of the network to a total of 19 layers, equip-
ping the architecture with the capacity of learning more
robust representations. These two deep networks achieved
13.5% [45] and 7.5% [46] top-5 error rates on the ImageNet
ILSVRC-2012 validation set, respectively. All the ConvNet
models are trained using mini-batch stochastic gradient de-
scent with a momentum fixed to 0.9. Our implementation is
based on the publicly available Caffe toolbox [23] with some
modifications. The input video frame is uniformly fixed to
the size of 224×224. In addition, we also perform simple
data augmentations like cropping and flipping following [45].

The spatial and the audio ConvNets are first pre-trained
using the ILSVRC-2012 training set with 1.2 million images
and then fine-tuned using the training video data. This
strategy has been observed effective in [45] for the spatial
stream, and we have observed it also helpful for the audio
stream. To fine-tune the spatial and the audio ConvNets,
we gradually decrease the learning rate from 10−3 to 10−4

after 14K iterations, then to 10−5 after 20K iterations. In
addition, dropout is applied to the fully connected layers
with a ratio of 0.5 to avoid over-fitting.

To train the motion ConvNet, we first compute optical
flow using the GPU implementation of [5] and stack the op-
tical flows in each 10-frame window to receive a 20-channel
optical flow image as the input (one horizontal channel and
one vertical channel for each frame pair). Unlike the spa-
tial and the audio ConvNets, we train the motion ConvNet
from scratch by adopting 0.7 dropout ratio and setting the
learning rate to 10−2 initially, which is reduced to 10−3 after
100K iterations and then to 10−4 after 200K iterations. Note
that we also tried to use the VGG 19 network to train the
motion ConvNet, but observed worse results as the network
contains much more parameters that cannot be well-tuned
using the limited training video data.

LSTM. We adopt the two-layer LSTM model proposed by
Graves [16] for temporal modeling. Two models are trained
with features extracted from the first fully-connected layer of
the spatial and the motion ConvNets respectively as inputs.
Each LSTM has 1,024 hidden units in the first layer and 512
hidden units in the second layer. We utilize a parallel imple-
mentation of the BPTT algorithm with a mini-batch size of
10 to train the network weights, where the learning rate and
momentum are set as 10−4 and 0.9. In addition, we set the
maximal training iterations to be 150K. Note that, in this
paper, we focus on a multi-stream framework by utilizing the
audio signal as a single stream for video classification. Fur-
ther decomposing the audio track into multiple segments to
extract more detailed temporal audio dynamics is feasible.

Fusion. As shown in Equation 8, the proposed fusion method
seeks a tradeoff among the three terms. We uniformly fix

λ2 to be 10−3 to encourage sparsity in the learned weight
matrix. The parameter λ1 is selected among {10−5, 10−4,
10−3, 10−2} using cross-validation.

Discussions. Our proposed framework has the capability of
modeling video data comprehensively by adaptively fusing
audio, static spatial, short-term motion and long-term tem-
poral clues. As described above, such a framework consists
of multiple separately trained deep networks. Although be-
ing feasible to jointly train the entire framework, it is com-
plicated and computationally demanding. A recent work
performing joint training of the LSTM with a ConvNet im-
proves the results on the UCF-101 benchmark from 70.5%
(separate network training) to 71.1% [9], which is not very
significant. In addition, training multiple deep networks sep-
arately makes the approach more flexible, where a compo-
nent may be replaced without the need of re-training the
entire framework. For instance, one can utilize more dis-
criminative ConvNet models like the GoogLeNet [51] and
deeper RNN models [7] to replace the current ConvNet and
LSTM parts respectively for better performance. Therefore,
in this work, we focus on presenting a general framework for
video classification. With the proposed multi-stream multi-
class fusion method, the framework is empirically proved to
be effective for the video classification task, as discussed in
the following section.

4. EXPERIMENTS
In this section, we report results on two popular datasets.

Experiments are designed to study the effectiveness of each
individual stream and the proposed fusion method.

4.1 Experimental Setup
Datasets and Evaluation Measures. UCF-101 [47] is a
widely adopted dataset for human action recognition, con-
taining 13,320 video clips annotated into 101 action classes.
All the video clips have a fixed frame rate of 25 fps with a
spatial resolution of 320 × 240 pixels. This dataset is chal-
lenging because most videos were captured under uncon-
trolled environments with camera motion, cluttered back-
grounds and large intra-class variations. We follow the sug-
gested experimental protocol and report mean accuracy over
the three training and test splits [19].

The Columbia Consumer Videos (CCV) dataset [25] con-
tains 9,317 YouTube videos and 20 classes. Most of the
classes are events like “basketball”, “graduation ceremony”
and “wedding dance”. A few are scenes and objects like
“beach” and “dog”. Following [25], we adopt the suggested
training and test split and compute the average precision
(AP) for each class. Mean AP (mAP) is used to measure
the overall performance on this dataset.

The two datasets possess very different characteristics.
Besides the difference of the defined semantic classes, the av-
erage video duration of CCV is 80 seconds, which is around
ten times longer than that of UCF-101. Testing on these
two datasets is helpful for evaluating the effectiveness and
the generalization capability of our multi-stream classifica-
tion approach.

Compared Methods. To validate the effectiveness of our
multi-stream multi-class fusion method, we compare with
the following alternatives: (1) Average Fusion, where the
mean scores of multiple network streams are used as the fi-
nal prediction; (2) Weighted Fusion, where the scores are



fused linearly with weights estimated by cross-validation;
(3) Kernel Average Fusion, where the scores are used as fea-
tures and kernels computed from different network scores
are averaged to train an SVM classifier; (4) Multiple Ker-
nel Learning (MKL) Fusion, where the kernels are combined
using the `p-norm MKL algorithm [27]; (5) Logistic Regres-
sion Fusion, where a logistic regression model is trained to
estimate the fusion weights; (6) Domain Adaptive Semantic
Diffusion (DASD) [24], which uses a graph diffusion formu-
lation for context-based multi-class score fusion.

4.2 Results and Discussions

4.2.1 Multi-Stream Networks
We first report the performance of each individual stream

on both datasets. After that, average fusion is adopted to
study whether two or more streams are complementary. The
proposed fusion method will be evaluated later.

Table 1 reports the results. Comparing the top two cells of
results on UCF-101, it is interesting to observe that the spa-
tial LSTM outperforms the spatial ConvNet and the motion
LSTM is also comparable to the motion ConvNet. This is
largely due to the fact that the long-term temporal clues are
fully discarded in the ConvNet based classification, which
can be exploited by the LSTM.

On the CCV dataset, the ConvNet achieves significantly
better results than the LSTM on both spatial and motion
streams. This is because the classes in CCV are either high-
level events or objects/scenes. Compared with human ac-
tions, the temporal clues of these classes are more obscure
and thus difficult to be captured. Also, the CCV videos
are temporally untrimmed, which may contain significant
portions of contents irrelevant to the classes, making the
temporal modeling task even more difficult.

One may notice that our motion networks perform worse
than spatial networks, which is not consistent with the ob-
servations in dense trajectory features [56]. We would like
to underline that motion information extracted from opti-
cal flow images tends to be noisy, especially on temporally
untrimmed long videos, as reported in [39]. In addition, the
dense trajectory features are hand-crafted without the need
of training, while the motion stream networks demand ex-
tensive training. Unfortunately, labeled training data in the
video domain is still quite limited. We expect to obtain bet-
ter results from the motion stream network once sufficient
training data is available.

The audio ConvNets operated on spectrograms produce
16.2% on UCF-101 and 21.5% on CCV. Note that only 51
classes in UCF-101 have audio signals, and the performance
on the 51-class subset is actually 32.1%. The audio stream
is much worse than the spatial and the motion streams on
both datasets, confirming that the visual channel are more
informative than the audio counterpart.

Next, we evaluate the combinations of multiple networks
to study whether fusion can compensate the limitations of
a single stream in describing complex video data. The sim-
ple average fusion is adopted. Results are summarized in
the bottom three groups of Table 1. We first assess the
gain from integrating the spatial and the motion informa-
tion modeled by ConvNet and LSTM respectively. On UCF-
101, significant improvements (about 6% for ConvNet and
3% for LSTM) are observed over the best single stream re-
sults. The gain on CCV is consistent but not as significant

UCF-101 CCV

Spatial ConvNet 80.1 75.0
Motion ConvNet 77.5 58.9

Spatial LSTM 83.3 43.3
Motion LSTM 76.6 54.7

Audio ConvNet 16.2∗ 21.5

ConvNet (spatial+motion) 86.2 75.8
LSTM (spatial+motion) 86.3 61.9

ConvNet+LSTM (spatial) 84.0 77.9
ConvNet+LSTM (motion) 81.4 70.9

ConvNet+LSTM (spatial+motion) 90.1 81.7
All the streams 90.3 82.4

Table 1: Performance of each individual stream and
their average fusion (indicated by “+”). ∗Note that
the videos of only 51 classes in UCF-101 contain
audio soundtracks. The audio ConvNet can produce
an accuracy of 32.1% on the 51-class subset.

as that on UCF-101, indicating that the short-term motion
is more critical for human action analysis. Note that the av-
erage fusion of the spatial and the motion ConvNets follows
the same idea of the two-stream approach proposed in [45].
Our implementation of this approach produces slightly worse
performance than that originally reported in [45] (86.2% vs.
88.0%).

We also fuse ConvNet with LSTM separately on both
streams to investigate the contribution of the long-term tem-
poral modeling. Overall, we observe very consistent im-
provements on both datasets. In particular, on CCV, al-
though the individual LSTM model is worse than ConvNet,
the combination of them leads to significant improvements.
Especially, a gain of nearly 12% is obtained on the motion
stream. These results show that the long-term temporal
clues are highly complementary to the ConvNet-based pre-
dictions, even in the case of modeling complex contents in
the long CCV videos.

Finally, the combination of ConvNet and LSTM on both
streams, indicated by “ConvNet+LSTM (spatial+motion)”,
achieves 90.1% and 81.7% on UCF-101 and CCV respec-
tively. Further adding the audio ConvNet (“all the streams”)
can improve the results particularly on CCV which contains
many classes that can be partly revealed by auditory clues
(e.g., cheering sounds in the sports events). In summary, the
fusion results clearly demonstrate that all the multimodal
clues in our approach are useful and should be adopted in a
successful video classification system.

4.2.2 Multi-Stream Multi-Class Fusion
In this subsection, we evaluate the proposed fusion method

and compare it with the alternative methods. Table 2 gives
the results. We see that all the methods produce better
results than the individual streams. The simple average fu-
sion and weighted fusion are slightly better than the learn-
ing based kernel fusion and logistic regression fusion, indi-
cating that the learning based methods are prone to over-
fitting. Kernel average fusion shows slightly better results
than MKL, which is consistent with the observations in
several previous studies like [13]. DASD produces similar
results to weighted fusion as it is essentially an iterative
weighted fusion method.



UCF-101 CCV

Average fusion 90.3 82.4
Weighted fusion 90.6 82.7

Kernel average fusion 90.2 82.1
MKL fusion 89.6 81.8

Logistic regression fusion 89.8 82.0
DASD 90.4 82.9

Multi-stream fusion (λ1=0) 90.9 82.8
Multi-stream multi-class fusion (λ2=0) 91.6 83.7

Multi-stream multi-class fusion (-A) 92.2 84.0
Multi-stream multi-class fusion 92.6 84.9

Table 2: Comparison of fusion methods. “-A” indi-
cates that the audio stream ConvNet is not adopted.
See texts for discussions.

Our proposed multi-stream multi-class fusion (the bottom
group of results) outperforms all the alternatives with clear
margins. To investigate the contributions of the class rela-
tionship term and the sparsity term in our approach, we set
λ1 and λ2 to be zero respectively. As can be seen, both terms
are very useful. Relatively, the class relationship (λ1) plays
a more important role than the sparsity term (λ2). This
corroborates the effectiveness of using the class relationship,
even when it is roughly estimated based on prediction score
correlations (see Section 3.3), which is very appealing. The
two terms are complementary as the sparsity inducing norm
further enhances robustness by alleviating incorrect infor-
mation sharing. Note that when eliminating both terms,
our fusion approach degenerates to the standard logistic re-
gression fusion. In summary, these results show that it is
helpful to fuse the outputs of both multiple network streams
and multiple classes.

The contribution of the audio clues is similar on both
datasets (“-A” indicates the same approach without using
the audio ConvNet). Audio improves just 0.4% on UCF-
101 because only half of the video clips contain soundtracks.
Figure 4 further shows the per-class performance on CCV,
where we can see that fusion leads to very consistent and
significant improvements for all the classes.

Comparisons with different regularizers. Since spar-
sity regularizers are popular constraints to improve gener-
alization ability as in standard MTL, we also compare the
proposed approach with this line of work by replacing the
proposed regularizers with alternative ones (see Eq. 9). The
results are summarized in Table 3. As we can see from the
table, the proposed regularization norm that utilizes class
relationship as contextual information outperforms the com-
peting regularizers. Different from forcing entries to be zero
(i.e., `1 norm) or selecting the same set of parameters for
related tasks (i.e., `21 norm), the proposed norm leverages
the class relationships in the models to guide the fusion pro-
cess, through constraining which and how much information
is required from other classes. This corroborates the fact the
scores from the softmax layer contain meaningful informa-
tion rather than simply indicating the predicted label [17].

4.2.3 Computational Efficiency
The proposed approach can achieve effective recognition

efficiently. For a CCV video clip with an average duration
of 80 seconds, extracting the improved dense trajectories

UCF-101 CCV

Fusion with `1 norm 90.9 82.8
Fusion with `21 norm 91.0 82.4

Fusion with (`21 + `1) norm 91.4 83.2
Multi-stream multi-class fusion 92.6 84.9

Table 3: Comparison with different regularization
strategies.

requires 850 seconds, while it only takes 131 seconds for our
method to finish the entire process, which is evaluated on a
single NVIDIA Telsa K40 GPU.

4.2.4 Comparison with State of the Arts

UCF-101 CCV

Donahue et al. [9] 82.9 Lai et al. [29] 43.6
Srivastava et al. [48] 84.3 Jiang et al. [25] 59.5

Wang et al. [57] 85.9 Xu et al. [66] 60.3
Tran et al. [53] 86.7 Ma et al. [34] 63.4

Simonyan et al. [45] 88.0 Jhuo et al. [21] 64.0
Ng et al. [39] 88.6 Ye et al. [68] 64.0
Lan et al. [30] 89.1 Liu et al. [32] 68.2
Zha et al. [70] 89.6 Wu et al. [64] 83.5

Wang et al. [59] 91.5 Nagel et al. [35] 71.7
Wang et al. [60] 92.4

Ours (-A) 92.2 Ours (-A) 84.0
Ours 92.6 Ours 84.9

Table 4: Comparison with state-of-the-art results.
Our approach produces to-date the highest reported
results on both datasets. “Ours (-A)” indicates the
same framework without using the audio stream
ConvNet.

We compare our approach with the state of the arts on
both datasets. Results are listed in Table 4. Our proposed
multi-stream approach achieves the highest performance on
both datasets. On UCF-101, many works with competitive
results are based on the hand-engineered dense trajectory
features [57, 30], while our approach fully relies on the deep
networks. Compared with the original result of the two-
stream approach [45], our approach captures a more com-
prehensive set of useful clues with a more effective fusion
method. Zha et al. [70] combined the ConvNet features
with the dense trajectories [56] to achieve competitive re-
sults. The previous best performance on UCF-101 is from
Wang et al. [59], who combined the two-stream approach [45]
and the dense trajectories. Note that a gain of 1% on the
widely adopted UCF-101 dataset is generally considered as
a significant progress.

In addition, the recent works in [9, 48, 64, 39] also adopted
the LSTM to model the temporal clues for video classifica-
tion and reported promising performance, but did not ex-
plore the audio stream nor employ advanced fusion strate-
gies.

On the CCV dataset, all the recent approaches were devel-
oped based on multiple features, either the hand-engineered
descriptors or the ConvNet-based representations. Our ap-
proach produces better results than all of them.



Figure 4: Per-class performance on CCV. Multi-stream multi-class fusion of the deep network outputs pro-
duces consistently better results than the individual streams on all the classes.

5. CONCLUSIONS
We have presented a multi-stream framework of deep net-

works for video classification. The framework harnesses mul-
timodal features that are more comprehensive than those
previously adopted. Specifically, standard ConvNets are ap-
plied to audio spectrograms, visual frames and stacked op-
tical flows to exploit the audio, spatial and short-term mo-
tion clues in videos, respectively. LSTM is further adopted
on the spatial and the short-term motion features from the
ConvNets for long-term temporal modeling. The outputs
from the different streams are then combined using a novel
method called multi-stream multi-class fusion, which not
only learns the best weights of the multi-stream networks for
each class, but also considers class relationships for improved
performance. Our results confirm that all the adopted streams
are effective for modeling both simple human actions in short
clips and complex events in temporally untrimmed Inter-
net videos. Combining the multi-stream multi-class predic-
tions by our proposed fusion method consistently outper-
forms peer approaches on two popular benchmarks.

This paper is among the limited number of studies show-
ing strong video classification performance using deep net-
works. As aforementioned, unlike the spatial ConvNet that
can be trained by fine-tuning a model pre-trained on the
ImageNet dataset, the motion ConvNet has to be trained
from scratch on videos. Therefore, one promising future di-
rection is to pre-train the motion ConvNet using large video
datasets like the Sports-1M [26], which may lead to much
better results.
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